Chemistry Periodic Table Application icon

Chemistry Periodic Table 1.1

5.8 MB / 10+ Downloads / Rating 4.2 - 10 reviews


See previous versions

Chemistry Periodic Table, developed and published by Ngabase, has released its latest version, 1.1, on 2016-11-02. This app falls under the Education category on the Google Play Store and has achieved over 1000 installs. It currently holds an overall rating of 4.2, based on 10 reviews.

Chemistry Periodic Table APK available on this page is compatible with all Android devices that meet the required specifications (Android 2.3+). It can also be installed on PC and Mac using an Android emulator such as Bluestacks, LDPlayer, and others.

Read More

App Screenshot

App Screenshot

App Details

Package name: com.ChemistryPeriodicTable

Updated: 8 years ago

Developer Name: Ngabase

Category: Education

App Permissions: Show more

Installation Instructions

This article outlines two straightforward methods for installing Chemistry Periodic Table on PC Windows and Mac.

Using BlueStacks

  1. Download the APK/XAPK file from this page.
  2. Install BlueStacks by visiting http://bluestacks.com.
  3. Open the APK/XAPK file by double-clicking it. This action will launch BlueStacks and begin the application's installation. If the APK file does not automatically open with BlueStacks, right-click on it and select 'Open with...', then navigate to BlueStacks. Alternatively, you can drag-and-drop the APK file onto the BlueStacks home screen.
  4. Wait a few seconds for the installation to complete. Once done, the installed app will appear on the BlueStacks home screen. Click its icon to start using the application.

Using LDPlayer

  1. Download and install LDPlayer from https://www.ldplayer.net.
  2. Drag the APK/XAPK file directly into LDPlayer.

If you have any questions, please don't hesitate to contact us.

App Rating

4.2
Total 10 reviews

Previous Versions

Chemistry Periodic Table 1.1
2016-11-02 / 5.8 MB / Android 2.3+

About this app

The periodic table is a tabular arrangement of the chemical elements, ordered by their atomic number (number of protons), electron configurations, and recurring chemical properties. This ordering shows periodic trends, such as elements with similar behaviour in the same column. It also shows four rectangular blocks with some approximately similar chemical properties. In general, within one row (period) the elements are metals on the left, and non-metals on the right.

The rows of the table are called periods; the columns are called groups. Six groups (columns) have names as well as numbers: for example, group 17 elements are the halogens; and group 18, the noble gases. The periodic table can be used to derive relationships between the properties of the elements, and predict the properties of new elements yet to be discovered or synthesized. The periodic table provides a useful framework for analyzing chemical behaviour, and is widely used in chemistry and other sciences.

Blocks
Left to right: s-, f-, d-, p-block in the periodic table
Specific regions of the periodic table can be referred to as blocks in recognition of the sequence in which the electron shells of the elements are filled. Each block is named according to the subshell in which the "last" electron notionally resides.] The s-block comprises the first two groups (alkali metals and alkaline earth metals) as well as hydrogen and helium. The p-block comprises the last six groups, which are groups 13 to 18 in IUPAC group numbering (3A to 8A in American group numbering) and contains, among other elements, all of the metalloids. The d-block comprises groups 3 to 12 (or 3B to 2B in American group numbering) and contains all of the transition metals. The f-block, often offset below the rest of the periodic table, has no group numbers and comprises lanthanides and actinides.

Metals, metalloids and nonmetals
Metals, metalloids, nonmetals, and elements with unknown chemical properties in the periodic table. Sources disagree on the classification of some of these elements.
According to their shared physical and chemical properties, the elements can be classified into the major categories of metals, metalloids and nonmetals. Metals are generally shiny, highly conducting solids that form alloys with one another and salt-like ionic compounds with nonmetals (other than the noble gases). The majority of nonmetals are coloured or colourless insulating gases; nonmetals that form compounds with other nonmetals feature covalent bonding. In between metals and nonmetals are metalloids, which have intermediate or mixed properties

App Permissions

Allows applications to open network sockets.
Allows applications to access information about networks.